MaxNuclease, GMP-Grade

Catalog # GMP-NUC-SE101

Storage Condition $-20^{\circ}C \pm 5^{\circ}C$ for 24 months. Avoid repeated freeze/thaw cycles.

Form Liquid

Source *E. Coli* with nuclease gene from *Serratia Marcescens*

Concentration $\ge 250 \text{U/}\mu\text{L}$

Unit Definition One unit is the amount of enzyme required to produce a change in absorbance at 260nm of 1.0 in 30 minutes, under optimum conditions with excess substrate.

Specific Activity ≥ 1.1x10⁶ U/mg

Product Contents

• MaxNuclease (250U/µL)

Product Description

MaxNuclease is a non-specific nucleic acid endonuclease derived from *Serratia Marcescens* that degrades both DNA and RNA including double-stranded, singlestranded, linear, circular, or supercoiled nucleic acids. No base preference is observed. MaxNuclease hydrolyzes internal phosphodiester bonds between the nucleotides and completely digests nucleic acids into fragments two to five bases in length.

Applications

- Removing DNA/RNA from other biologicals
- Reducing viscosity caused by nucleic acids
- Purification of viral vaccines, viral vectors for vaccines
- Preparing samples in western blot analysis, 2D gel electrophoresis, ELISA, and chromatography
- Preventing cell clumping

Quality Control Statement

This product has been filed with the FDA Drug Master Files and is assigned DMF #036799. KACTUS manufactures this product according to GMP guidelines and performs stringent quality control testing before release. The production is antibiotic- and animal-free.

Quality Control Release Criteria

Assay	Criteria
Activity (Dissolving herring sperm DNA)	≥ 250U/µL
Purity (Bis-Tris)	≥ 95%
Purity (SEC-HPLC)	≥ 99%
Endotoxin	≤ 0.01EU/kU
Residual Protease	Negative
Residual Host Protein	≤ 10ppm
Sterility	Negative
Residual Heavy Metal	≤ 10ppm
Mycoplasma	Negative

MaxNuclease Reaction Conditions

Condition	Optimal*	Effective**
Mg ²⁺	1-2mM	1-10mM
Monovalent cation concentrations (Na ⁺ , K ⁺ , etc.)	0-100mM	0-300mM
рН	8.0-10.0	4.0-10.0
Temperature	37C	0-50C
PO43-	0-10mM	0-80mM

*Optimal is defined as the conditions under which MaxNuclease retains >90% of its activity.

**Effective is defined as the condition under which MaxNuclease retains >15% of its activity.

Notes

 Inappropriate salt ion concentrations can inhibit MaxNuclease. In addition, denaturants, protein precipitants, etc. in the system can also inhibit the activity of MaxNuclease.

Performance Validation

Lane N	I: DNA marker
Lane 1	: PCR product
Lane 2	2: PCR product+1U MaxNuclease
Lane 3	B: PCR product+1U competitor
Lane 4	: genomic DNA
Lane §	: genomic DNA+1U MaxNuclease
Lane 6	e genomic DNA+1U competitor
Lane 7	: plasmid DNA
Lane 8	: plasmid DNA +1U MaxNuclease
Lane 9	: plasmid DNA +1U competitor

MaxNuclease shows comparable degradation activity of nucleic acids to leading competitors.