DNase I, GMP-Grade

Catalog #GMP-DNI-EE001

Storage Condition $-20^{\circ}C \pm 5^{\circ}C$ for 24 months. Avoid repeated freeze/thaw cycles.

Form Liquid

Source An *E. coli* strain that carries DNase I gene from *Bovine Pancreatic*

Storage Buffer 10 mM Tris-HCl (pH7.6), 2 mM CaCl₂, 50% Glycerol

Concentration 4U/µL

Unit Definition One unit is the amount of enzyme required to completely degrade 1 μ g of pBR322 DNA in 10 minutes at 37 °C in DNase I reaction buffer.

Product Contents

• DNase I (RNase-free, 4U/µL)

Product Description

DNase I is an endonuclease that digests single- and double-stranded DNA to mono- and oligonucleotides containing 5' phosphate and 3'-hydroxylated ends. It is an essential enzyme for the efficient digestion of DNA during RNA purification, suitable for all molecular diagnostics and *in vitro* mRNA synthesis applications.

Applications

- In vitro transcription (IVT)
- Removal of DNA from RNA samples
- DNase I footprinting

Quality Control Statement

This product has been filed with the FDA Drug Master Files and is assigned DMF #038032. KACTUS manufactures this product according to GMP guidelines and performs stringent quality control testing before release. The production is antibiotic- and animal-free.

Quality Control Release Criteria

Assay	Criteria
Activity (Plasmids Degradation)	≥ 4kU/mL
Purity (SEC-HPLC)	≥ 95%
Endotoxin	≤ 1.2EU/mL
Residual RNase	Negative
Residual Protease	Negative
Residual Host Cell Protein	≤ 20ng/mg
Residual Host Cell DNA	≤ 100pg/mg
Residual Heavy Metal	≤ 10 ppm
Residual Nickel Salt	≤ 10 ppm
Bioburden	≤ 1CFU/10mL

Protocol for Degradation of DNA Template after *In Vitro* Transcription Reaction

- 1. After transcription, add 2U of DNase I to a 20µL transcriptional reaction per 1µg DNA template.
- 2. Incubate at 37°C for 15 minutes.
- 3. Add EDTA to a final concentration of 5 mM as RNA hydrolyzes during heating with divalent cations in the absence of a chelating reagent.
- Incubate at 65°C for 10 minutes for heat inactivation of DNase I. Note: Phenol/chloroform extraction followed by ethanol precipitation of RNA can also be used to remove DNase I.

Protocol for In Vitro Transcription

1. Prepare the following reaction mixture

Reagent	Quantity
5X Transcription Buffer-1 (included with <u>T7 RNA Polymerase</u>)	4µL
CTP/GTP/ATP/UTP (100mM each)	2µL each
Murine RNase Inhibitor (120U/µL)	0.5µL
Pyrophosphatase, Inorganic (0.1U/µL)	1µL
T7 RNA Polymerase (50U/µL)	2µL
Template DNA	1µg
RNase-free Water	Up to 20µL

- 2. Incubate at 37°C for 1-2 hours.
- 3. After transcription, add 2U DNase I to digest DNA template for 15 minutes at 37°C.
- 4. Inactivate DNase I by phenol/chloroform extraction.

Notes

 Divalent metal ions such as Mg²⁺ and Ca²⁺ are necessary for DNase I activity, while DNase I is inhibited by monovalent metal ions such as Na⁺ and K⁺.